14 research outputs found

    Modulatory Effects of Modafinil on Neural Circuits Regulating Emotion and Cognition

    No full text
    Modafinil differs from other arousal-enhancing agents in chemical structure, neurochemical profile, and behavioral effects. Most functional neuroimaging studies to date examined the effect of modafinil only on information processing underlying executive cognition, but cognitive enhancers in general have been shown to have pronounced effects on emotional behavior, too. We examined the effect of modafinil on neural circuits underlying affective processing and cognitive functions. Healthy volunteers were enrolled in this double-blinded placebo-controlled trial (100 mg/day for 7 days). They underwent BOLD fMRI while performing an emotion information-processing task that activates the amygdala and two prefrontally dependent cognitive tasks—a working memory (WM) task and a variable attentional control (VAC) task. A clinical assessment that included measurement of blood pressure, heart rate, the Hamilton anxiety scale, and the profile of mood state (POMS) questionnaire was also performed on each test day. BOLD fMRI revealed significantly decreased amygdala reactivity to fearful stimuli on modafinil compared with the placebo condition. During executive cognition tasks, a WM task and a VAC task, modafinil reduced BOLD signal in the prefrontal cortex and anterior cingulate. Although not statistically significant, there were trends for reduced anxiety, for decreased fatigue-inertia and increased vigor-activity, as well as decreased anger-hostility on modafinil. Modafinil in low doses has a unique physiologic profile compared with stimulant drugs: it enhances the efficiency of prefrontal cortical cognitive information processing, while dampening reactivity to threatening stimuli in the amygdala, a brain region implicated in anxiety

    Emerging agents that target signaling pathways in cancer stem cells

    No full text
    corecore